Ysinembargosemueve
  ESPECIAL MAYO 2011: Centrales Nucleares
 

ESPECIAL MAYO 2011: CENTRALES + NUCLEARES
 

Hace ya unos días, le pedí a mi gran amigo Pablo que me ofreciese alguna idea interesante para publicar como especial de este mes. Entre otras, surgio su interés por el incidente ocurrido recientemente en la central nuclear de Fukushima y su comparación con el triste 25 aniversario celebrado el 25 de abril de la catástrofe de Chernobyl.
Pero antes de poder comparar estos acontecimientos, sera justo resolver todas las dudas que tengo acerca de las centrales nucleares, tan presentes y a la vez tan desconocidas por mi...

Comenzaremos por lo básico ¿QUE ES UNA CENTRAL NUCLEAR?

Una central nuclear es una central termoeléctrica en la que actúa como caldera un reactor nuclear. La energía térmica se origina por las reacciones nucleares de fisión en el combustible nuclear formado por un compuesto de uranio.   El combustible nuclear se encuentra en el interior de una vasija herméticamente cerrada, junto con un sistema de control de la reacción nuclear y un fluido refrigerante, constituyendo lo que se llama un reactor nuclear. El calor generado en el combustible del reactor y transmitido después a un refrigerante se emplea para producir vapor de agua, que acciona el conjunto turbina-alternador, generando la energía eléctrica.

 

La central se ha realizado con un diseño específico que prevé estructuras civiles adecuadas, sistemas duplicados que responden al fallo previsto de uno de ellos y coeficientes de sobredimensionamiento para resistir el sismo máximo esperable, proteger contra las radiaciones ionizantes, prevenir los accidentes posibles y mitigar sus consecuencias. Por este motivo, los edificios de una central nuclear en comparación con una convencional de similar potencia son mucho más robustos y más grandes para alojar los sistemas redundantes instalados.
 




Más o menos esto es entendible, dentro de la central se produce la fisión nuclear, pero...¿que es la fisión nuclear?

FISIÓN NUCLEAR

La fisión nuclear consiste en la divisíón del núcleo de un átomo pesado en otros elementos más ligeros, de forma que en esta reacción se libera gran cantidad de energía. A pesar de ser altamente productiva (energéticamente hablando), es también muy difícil de controlar, como podemos ver en el desastre de Chernobyl, y en las bombas de Nagasaki e Hirosima.

Cuando este proceso de fisión nuclear se puede controlar, la energía se libera lentamente y es transformada en energía eléctrica en un reactor nuclear de fisión, como los utilizados en la actualidad en muchas partes del mundo, entre ellas en España.

Gran parte de las centrales nucleares existentes en la actualidad se basan en reactores de fisión, utilizando como combustible uranio compuesto de entre un 3,5% y un 4,5% de U-235 y el resto de U-238 (Este isótopo es el conocido uranio enriquecido). La reacción nuclear en cadena genera la energía controlada se producecuando un núcleo de Uranio-235 se divide en dos o más núcleos por la colisión de un neutrón. De este modo, los neutrones liberados colisionan de nuevo formando un reacción en cadena.

fision.jpg

 

En las centrales nucleares por fisión, el calor desprendido de las reacciones genera vapor de agua, el cual, al pasar por un sistema de turbinas, genera la electricidad que puede ser trasladada a la red eléctrica.





¿QUE DIFERENCIA HAY ENTRE FISION Y FUSION?

Fisión nuclear
La fisión nuclear es una reacción en la cual al hacer incidir neutrones sobre un núcleo pesado, éste se divide en dos núcleos, liberando una gran cantidad de energía y emitiendo dos o tres neutrones.
Fue descubierta por O. Hahn y F. Strassmann en 1938, al detectar elementos de pequeña masa en una muestra de uranio puro irradiada con neutrones.
El proceso de fisión es posible por la inestabilidad que tienen los núcleos de algunos isótopos de elementos químicos de alto número atómico, como por ejemplo el uranio 235, debido a la relación existente entre el número de partículas de carga eléctrica positiva (protones) y el número de partículas nucleares de dichos núcleos (protones y neutrones).
 
Basta una pequeña cantidad de energía como la que transporta el neutrón que colisiona con el núcleo, para que pueda producirse la reacción de fisión. A su vez, los neutrones emitidos en la fisión de un núcleo pueden ocasionar nuevas fisiones al interaccionar con nuevos núcleos fisionables que emitirán nuevos neutrones y así sucesivamente. A este efecto multiplicador se le conoce con el nombre de reacción en cadena.
 
La primera reacción de fisión en cadena sostenida la consiguió Enrico Fermi en 1942, en la Universidad de Chicago. En una pequeña fracción de segundo, el número de núcleos que se han fisionado libera una energía un millón de veces mayor que la obtenida al quemar un bloque de carbón o explotar un bloque de dinamita de la misma masa.
 
Cuando se consigue que sólo un neutrón de los liberados produzca una fisión posterior, el número de fisiones que tienen lugar por segundo es constante y la reacción está controlada.
 
En este principio de fisión están basados los 436 reactores nucleares que funcionan en todo el mundo y que producen el 17% de la electricidad que se consume mundialmente.
 
Fusión nuclear
La fusión nuclear es la reacción en la que dos núcleos muy ligeros, en general el hidrógeno y sus isótopos, se unen para formar un núcleo más pesado y estable, con gran desprendimiento de energía. La energía producida por el Sol tiene este origen.
Para que se produzca la fusión, es necesario que los núcleos cargados positivamente se aproximen venciendo las fuerzas electrostáticas de repulsión. En la Tierra, donde no se puede alcanzar la gran presión que existe en el interior del Sol, la energía necesaria para que los núcleos que reaccionan venzan las interacciones se puede suministrar en forma de energía térmica o utilizando un acelerador de partículas.
La solución más viable es la fusión térmica. Estas reacciones de fusión térmica, llamadas reacciones termonucleares, se producen en los reactores de fusión y fundamentalmente con los isótopos de hidrógeno.
El aprovechamiento por el hombre de la energía de fusión pasa por la investigación y el desarrollo de sistemas tecnológicos que cumplan dos requisitos fundamentales: calentar y confinar. Calentar para conseguir un gas sobrecalentado (plasma) en donde los electrones salgan de sus órbitas y donde los núcleos puedan ser controlados por un campo magnético; y confinar, para mantener la materia en estado de plasma o gas ionizado, encerrada en la cavidad del reactor el tiempo suficiente para que pueda reaccionar.
La ganancia energética de la fusión consiste en que la energía necesaria para calentar y confinar el plasma sea menor que la energía liberada por las reacciones de fusión.
Este tipo de reacciones son muy atractivas como fuente de energía ya que el deuterio no es radiactivo y se encuentra de forma natural y prácticamente ilimitada en la naturaleza. El tritio no se presenta de forma natural y además es radiactivo. Sin embargo las investigaciones están básicamente centradas en las reacciones deuterio-tritio, debido a que liberan una mayor energía y la temperatura a la que tiene lugar la fusión es considerablemente menor que en las otras.
La tecnología de fusión se está desarrollando en dos líneas principales:
  • Fusión por confinamiento magnético: Las partículas eléctricamente cargadas del plasma son atrapadas en un espacio limitado por un campo magnético al describir trayectorias helicoidales determinadas por las líneas de fuerza de dicho campo. El dispositivo más desarrollado tiene forma toroidal y se denomina Tokamak (siendo esta la tecnología utilizada en el proyecto ITER).
  • Fusión por confinamiento inercial: Consiste en crear un medio tan denso que las partículas no tengan prácticamente ninguna posibilidad de escapar sin chocar entre sí. Súbitamente impactada por poderosos haces luminosos creados por láser, una pequeña esfera de un compuesto sólido de deuterio y tritio implosiona bajo los efectos de la onda de choque. De esta forma, se hace cientos de veces más densa que en su estado sólido normal y explosiona bajo los efectos de la reacción de fusión.
Actualmente hay reactores de investigación para lograr producir electricidad a través de este proceso. Cabe destacar el Reactor Experimental Termonuclear Internacional ITER en el que participan la Unión Europea, China, Japón, Rusia, India, Corea del Sur y Estados Unidos.


Fuentes:http://www.yosoynuclear.org/index.php?option=com_content&view=article&id=20:ique-es-una-central-nuclear&catid=11:divulgacion&Itemid=22
http://erenovable.com/2006/06/01/fision-nuclear/
http://www.yosoynuclear.org/index.php?option=com_content&view=article&id=87:diferencias-entre-fision-y-fusion-nuclear&catid=11:divulgacion&Itemid=22


 


 
Sirva lo anterior como una pequeña introducción a las centrales nucleares, mucho más complejas, por supuesto. Les recomiendo uno de los mejores artículos que he leido en estos días sobre este asunto y las diferencias entre Fukushima y Chernobyl:
 

La central nuclear de Fukushima tiene 6 reactores de agua ligera del tipo BWR (Boiling Water Reactor, reactor de agua en ebullición). Los reactores 1, 2 y 3 se detuvieron automáticamente cuando se produjo el terremoto, mientras que los números 4, 5 y 6 estaban parados por mantenimiento.

Según parece, a consecuencia del terremoto y del subsiguiente tsunami la planta completa se habría quedado sin energía eléctrica: los sistemas de emergencia (generadores y baterías) habrían resultado dañados por el terremoto y el tsunami.

Como consecuencia, los sistemas de refrigeración de los reactores se habrían detenido. En un reactor nuclear de tipo BWR es necesario mantener circulando agua refrigerante dentro del núcleo del reactor, que de lo contrario genera suficiente calor como para fundirse a sí mismo, lo que constituye el peor tipo de accidente nuclear.

En una fusión completa materiales altamente radiactivos pueden escapar al exterior y contaminar grandes extensiones de terreno; un reactor de este tipo puede contener hasta 140 toneladas de combustible nuclear.

En el reactor 1 de Fukushima, la pérdida de los sistemas de refrigeración provocó un descenso del nivel de agua dentro del núcleo y el consiguiente aumento de la temperatura interna y de la presión dentro del recinto del reactor.

La pérdida de sistemas de refrigeración hizo descender el nivel de agua en el núcleo

Los operadores intentaron reducir la presión liberando gases y vapor ligeramente contaminados, lo que explica las primeras informaciones sobre contaminación radiactiva.

Las autoridades trataron de enviar por carretera generadores y baterías auxiliares para proporcionar energía a los sistemas de control, pero el problema no se controló, culminando en una explosión que ha volado parte del edificio externo de contención.

No está confirmado, pero parece cada vez más probable que se produzca al menos una fusión parcial del núcleo. Las autoridades han clasificado el accidente con el Nivel 4, lo que significa que no prevén peligro fuera del recinto de la planta; no obstante se ha evacuado a la población en un radio de más de 20 kilómetros.

No es posible un 'Síndrome de China'

¿Es posible un ‘Sindrome de China’ en Japón? De ninguna manera: un accidente como el popularizado por la película de 1978 es imposible.

Los reactores nucleares occidentales (y los japoneses pertenecen a esa familia de diseños) están situados dentro de un edificio de contención con varias capas.

El edificio externo, típicamente de hormigón, tiene como misión retener los gases y vapores que se pueden formar, pero no está diseñado para contener el núcleo del reactor en caso de accidente.

Para el caso de una fusión completa el núcleo está contenido en una gigantesca y sofisticada vasija de acero muy compleja que funciona como una enorme olla a presión: todo el combustible nuclear y los sistemas primarios de control están en su interior.

Dentro de la vasija de un reactor BWR la presión puede alcanzar las 70-75 atmósferas y la temperatura ronda los 300 grados celsius: para soportar esas condiciones durante décadas de vida este elemento está construido con aceros y parámetros muy especiales; un componente clave sólo lo fabrica en todo el mundo la empresa japonesa Japan Steel Works.

En caso de accidente con fusión total o parcial el núcleo fundido se derrama en el interior de la vasija, cuyas paredes de hasta 15 centímetros de espesor de acero de alta tecnología son capaces de resistir el calor generado.

El accidente de la central estadounidense de Three Mile Island en 1979 fundió una parte sustancial del núcleo del reactor TMI-2, pero los materiales altamente radiactivos quedaron confinados en la vasija y nunca salieron al exterior.

Diferencias con Chernóbil

Ésta es la principal diferencia de diseño entre los reactores occidentales y los soviéticos, que carecían de esta protección. Por eso al fundirse el núcleo del reactor en el accidente de Chernóbil el material del núcleo se derramó por las entrañas de la central y parte de ellos acabaron sañiendo al exterior.

Ni siquiera en este caso hubo ‘Síndrome de China’: el calor del núcleo fundido no fue suficiente para que la masa penetrara en el subsuelo.

¿Cuáles pueden ser las consecuencias del accidente nuclear en Fukushima? Las consecuencias de la aireación de gases radiactivos y de la posterior explosión del edificio de contención son relativamente limitadas: la cantidad de radiación, los tipos de isótopos radiactivos y el hecho de que el viento se movía hacia el mar contribuirán a minimizar la contaminación local.

Las consecuencias del accidente de Fukushima son relativamente limitadas

Los daños provocados por la explosión del edificio de contención pueden ser graves para el propio reactor, pero tampoco cabe esperar que sean determinantes.

Si la fusión del núcleo es contenida por la vasija se formará un gran elemento contaminante altamente radiactivo que estará confinado en su propia burbuja de acero, como ocurrió en Three Mile Island, pero no habrá liberación de isótopos altamente peligrosos: la vasija podrá ser preservada y controlada a largo plazo con costes relativamente bajos y no habrá contaminación.

En el peor (y poco probable) de los casos la vasija habría sido dañada por la explosión y los elementos del núcleo fundido podrían derramarse sobre el suelo, provocando una extensa contaminación altamente radiactiva sobre todo si este material atraviesa las protecciones y entra en contacto con aguas subterráneas.

El reactor 1 de la central estaba destinado a ser desactivado a finales de este mes

Curiosamente, el reactor 1 de Fukushima, que entró en servicio en 1971, estaba destinado a ser desactivado a finales del presente mes de marzo, por lo que no habrá consecuencias económicas severas.

Sin embargo la desconexión de las plantas nucleares japonesas y las inspecciones de seguridad antes de su reapertura tras el accidente pueden limitar durante muchos meses la capacidad de generación eléctrica del país, ralentizando su recuperación y agravando la crisis económica.

Fuente: http://www.rtve.es/noticias/20110312/ocurrido-central-nuclear-fukushima/416287.shtml

 





Añadir comentario acerca de esta página:
Tu nombre:
Tu mensaje:

 
   
 
=> ¿Desea una página web gratis? Pues, haz clic aquí! <=